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Abstract: The present study is concerned with the reflection and propagation of thermoelastic harmonic plane waves from

the stress-free and isothermal surface of a homogeneous, isotropic thermally conducting elastic half-space in the frame of

the modified Green–Lindasy (MGL) theory of generalized thermoelasticity with strain rate proposed by Yu et al. (Mec-

canica 53:2543–2554, 2018). The thermoelastic coupling effect creates two types of coupled longitudinal waves which are

dispersive as well as exhibit attenuation. Different from the thermoelastic coupling effect, there also exists one independent

vertically shear-type (SV-type) wave. In contrast to the classical Green–Lindsay (GL) and Lord–Shulman (LS) theories of

generalized thermoelasticity, the SV-type wave is not only dispersive in nature but also experiences attenuation. Analytical

expressions for the amplitude ratios of the reflected thermoelastic waves are determined when a coupled longitudinal wave

is made incident on the free surface. The paper concludes with the numerical results on the phase speeds and the amplitude

ratios for specific parameter choices. Various graphs have been plotted to analyze the behavior of these quantities. The

characteristics of employing the MGL model are discussed by comparing the numerical results obtained for the present

model with those obtained in case of the GL and LS models.

Keywords: Generalized thermoelasticity; Modified GL model; Dispersion relation; Attenuation; Reflection
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1. Introduction

In the last five decades, thermoelasticity models in which

thermal signals propagate at finite velocity were arisen

much attention. The classical coupled thermoelasticity

(CTE) model proposed by Biot [1] with the introduction of

the strain rate term in the Fourier’s heat conduction law

leads to a diffusion-type heat conduction model. In this

model, although the elastic wave propagates with finite

phase speed, thermal wave propagates at an infinite phase

speed, which is not possible physically. In order to solve

this issue, in 1967, Lord and Shulman [2] proposed a

generalized thermoelastic model (LS model) based on the

Maxwell-Cattaneo [3] model on Fourier’s law of heat

conduction. After the notable work of Lord and Shulman,

Green and Lindsay [4] added temperature rate among the

constitutive variables and developed another model (GL

model), labeled as temperature rate-dependent generalized

thermoelasticity or generalized thermoelasticity with two

relaxation times. Both of these theories predict finite speed

of propagation of the elastic as well as the thermal wave.

There are some engineering materials such as metals which

possess a relatively high rate of thermal damping and thus

are not suitable for experimental purpose. Due to recent

advances in material engineering, the foreseeable future to

identify (or even manufacture for laboratory purposes) an

idealized material for the purpose of studying the propa-

gation of thermal waves at finite speed is possible. In the

beginning of 1990s, the relevant theoretical developments

on the subject have been done by Green and Naghdi (GN)

[5–7]. They provided sufficient primary modifications in

the constitutive relations those permit to deal with a wider

class of heat flow problems, entitled as GN I, GN II and

GN III. Among these three types of models, the linearized

form of GN I is the same as the classical thermoelasticity
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theory based on the classical Fourier’s heat conduction law.

On the contrary, the linearized forms of GN II and GN III

models permit the finite speed of propagation of thermal

signals. The entropy flux vector in GN II and GN III theory

was modeled in terms of the potential that also influences

stresses. The GN theory II does not contain dissipation of

thermal energy in contrast to the GN theory of type III

which is considered as thermoelasticity theory with energy

dissipation. Other remarkable works based on the above

theories of generalized thermoelasticity can be found in the

studies [8–16].

Following the notable work of Green and Lindsay [4],

recently, Yu et al. [20] established a new model of gen-

eralized thermoelasticity theoretically by considering the

strain rate term in the Green–Lindsay (GL) model [4] of

generalized thermoelasticity with the aid of extended

thermodynamics. A problem of semi-infinite one-dimen-

sional thermoelastic medium with traction-free at one end

and subjected to a temperature rise using the Laplace

transform method is also studied by Yu et al. [20]. They

observed that the strain rate may eliminate the disconti-

nuity of the displacement at the elastic and thermal wave

fronts. They compared the present model [20] with the

Green–Naghdi (GN) models [6, 7] and conclude that the

thermal wave speed of the present model is faster than the

GN II model [7] and slower than the GN III model [6].

They also showed that their new model is free from the

jump discontinuity occurred in the displacement distribu-

tion in case of GL model, and is safer in engineering

practices than GN model. Later, Quintanilla [21] reported

some qualitative results for the modified Green–Lindsay

(MGL) thermoelasticity [20]. He proved the exponential

decay of the solutions and given a description of the spatial

behavior of the solutions of the modified Green–Lindsay

thermoelasticity. He also deduced a result on the continu-

ous dependence of the solutions with respect to the initial

conditions and to the supply terms and established the

exponential stability of the solutions with respect to the

time in the case where the supply terms vanish.

The study of propagation of seismic waves in ther-

moelastic media is of great importance in various fields

such as earthquakes, geophysics, soil dynamics and seis-

mology. Wave phenomenon in a thermoelastic medium is

of great practical importance in various technological and

geophysical circumstances. The propagation of waves

along with other geophysical and geothermal data carries

information about the structure and distribution of under-

ground magnum. The wave propagation as part of explo-

ration seismology helps in various economic activities like

tracing of hydrocarbons and other mineral ores which are

essential for various developmental activities like con-

struction of dams, huge buildings, roads, bridges, the

design of highways as well as foundation problems in soil

mechanics. The problem of reflection of plane waves has

been the subject of several investigations. Some of the

notable work on waves in thermoelastic media is listed in

the studies [22–30]. Reflection of coupled generalized

temperature rate-dependent thermoelastic waves on a half-

space was investigated by Gupta et al. [31]. Abo-Dahab

[32] discussed the propagation of P-, T- and SV-waves at

the interface between two solid–liquid media with mag-

netic field and initial stress in the context of two ther-

moelastic theory. Biswas and Sarkar [33] derived the

solution of the steady oscillations equations in porous

thermoelastic medium with dual-phase-lag model. They

also studied the phase velocity, attenuation coefficient and

penetration depth of time-harmonic plane waves in porous

thermoelastic medium with dual phase lag. Li et al. [34]

investigated the reflection and transmission of elastic

waves at an interface with consideration of couple stress

and thermal wave effects. Recently, Sarkar and Tomar [35]

reported plane waves in nonlocal thermoelastic solid with

voids and Mondal and Sarkar [36] studied waves in dual-

phase-lag thermoelastic materials with voids based on

Eringen’s nonlocal elasticity. Das et al. [37] discussed the

reflection of plane waves from the stress-free isothermal

and insulated boundaries of a nonlocal thermoelastic solid.

Lotfy et al. [38] investigated the thermomechanical

response model on a reflection photothermal diffusion

waves for semiconductor medium.

During our literature review, we noticed that no ther-

moelastic plane wave reflection problem has been studied

so far in the context of the new modified Green–Lindasy

theory [20]. In the present investigation, we study the

reflection phenomenon of thermoelastic plane harmonic

waves from the isothermal stress-free surface of a homo-

geneous, isotropic thermally conducting solid half-space by

employing the MGL theory of generalized thermoelasticity

with strain rate, proposed by Yu et al. [20]. The thermoe-

lastic coupling effect creates two types of coupled longi-

tudinal waves which are dispersive as well as exhibit

attenuation. Different from the thermoelastic coupling

effect, there also exists one independent vertically shear-

type (SV-type) wave. In contrast to the classical Green–

Lindsay (GL) and Lord–Shulman (LS) theories of gener-

alized thermoelasticity, the SV-type wave is not only dis-

persive in nature but also experiences attenuation.

Analytical expressions for the amplitude ratios and their

respective energy ratios for reflected thermoelastic waves

are determined when a coupled longitudinal wave is made

incident on the free surface. The paper concludes with the

numerical results on the phase speeds, amplitude ratios and

their respective energy ratios for specific parameter choi-

ces. Various graphs have been plotted to analyze the

behavior of these quantities. The characteristics of

employing the MGL model are discussed by comparing the
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numerical results obtained for the present model with those

obtained in case of the GL [4] and LS [2] theories of

thermoelasticity.

2. Basic governing equations

A thermoelastic process is a coupled dynamical process of

an exchange of mechanical energy into thermal energy and

vice versa under the action of externally applied thermo-

mechanical loading. Such a process is accompanied by

strain and temperature changes inside the continuum, all of

which vanish upon the removal of the applied loading. The

process can be described in terms of the physical field

variables like temperature, displacement vector and strain

tensor. In the present study, we consider the modified

Green–Lindsay (MGL) model [20] to investigate the

reflection and propagation of thermoelastic plane waves

from the isothermal stress-free surface of a homogeneous,

isotropic thermally conducting solid half-space. Following

[20], the basic equations of the MGL model for a homo-

geneous, isotropic thermally conducting elastic medium (in

the absence of heat supply and body force) can be arranged

in the following way (in general Cartesian coordinates

system Oxyz):

1þ s1
o

ot

� �
lui;jj þ ðkþ lÞuj;ij
� �

� c 1þ s1
o

ot

� �
H;i ¼ q€ui;

ð1Þ

KTH;ii ¼ qCE 1þ s0
o

ot

� �
_Hþ cT0 1þ s0

o

ot

� �
_ess; ð2Þ

rij ¼ 1þ s1
o

ot

� �
2leij þ kekkdij
� �

� c Hþ s1 _H
� �

dij:

ð3Þ

In the above equations, ui are the displacement compo-

nents, eij ¼ ðui;j þ uj;iÞ=2 are the components of the elastic

strain tensor, ekkð¼ uk;kÞ is the dilatation, rij are the com-

ponents of the elastic stress tensor, t is the time, k, l are

Lam�e constants, c ¼ ð3kþ 2lÞaT is the thermoelastic

coupling parameter, aT is the coefficient of linear thermal

expansion, q is the mass density, CE is the specific heat at

constant strain, H is the thermodynamic temperature above

the reference temperature T0 such that jH=T0j � 1, s0, s1
are the thermal relaxation parameters such that s1 � s0 � 0,

KT is the thermal conductivity of the material and

i; j ¼ x; y; z.

In order to study the present problem in the context of

three generalized thermoelasticity models, namely MGL,

GL and LS models, we now write the unified form of

Eqs. (1)–(3) as

1þ t0s1
o

ot

� �
lui;jj þ ðkþ lÞuj;ij
� �

� c 1þ t1s1
o

ot

� �
H;i ¼ q€ui;

ð4Þ

KTH;ii ¼ qCE 1þ s0
o

ot

� �
_H

þ cT0 1þ t2s0
o

ot

� �
_ess;

ð5Þ

rij ¼ 1þ t0s1
o

ot

� �
2leij þ kekkdij
� �

� c Hþ t1s1 _H
� �

dij;

ð6Þ

where t0; t1; t2 are some constant parameters used to write

the above equations under the three models in a unified

way. Equations (4)–(6) reduce to the particular set of

equations for the MGL, GL and LS models, when

• MGL model t0 ¼ t1 ¼ t2 ¼ 1:

• GL model t0 ¼ t2 ¼ 0; t1 ¼ 1:

• LS model t0 ¼ t1 ¼ 0; t2 ¼ 1:

3. Formulation of the problem

We consider a linear, homogeneous, isotropic thermally

conducting elastic half-space, z� 0 at uniform reference

temperature T0 as shown in Fig. 1. Let the origin O of the

fixed rectangular Cartesian coordinate system Oxyz be

fixed at a point on the plane boundary z ¼ 0 with positive

z-axis pointing vertically downward into X and x-axis is

directed along the horizontal direction. The y-axis is taken

in the direction of the line of intersection of the plane wave

front with the plane surface. The boundary surface z ¼ 0 is

assumed to be isothermal and free from the mechanical

stresses.

If we restrict our analysis to the plane strain problem

parallel to the x–z plane, then all the field variables may be

taken as functions of x , z and t only. Hence, the dis-

placement components and the temperature field are of the

form

Fig. 1 Schematic of the present problem: incident and reflected

thermoelastic waves at the surface z ¼ 0

Modified Green–Lindsay model on the reflection
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u1 ¼ uðx; z; tÞ; u2 ¼ vðx; z; tÞ ¼ 0;

u3 ¼ wðx; z; tÞ;H ¼ Hðx; z; tÞ:
ð7Þ

Also, in order to obtain the dimensionless forms of

Eqs. (4)–(6) under the above assumptions, we introduce

the following variables

ðx0; z0Þ ¼ CLgðx; zÞ; ðu0;w0Þ
¼ CLgðu;wÞ; ðt0; s00; s01Þ ¼ C2

Lgðt; s0; s1Þ;

H0 ¼ cH

qC2
L

; r0ij ¼
rij
qC2

L

;

where C2
L ¼ ðkþ 2lÞ=q is the speed of classical longitu-

dinal (dilatational) wave and g ¼ qCE=KT is the thermal

viscosity.

Equations (4)–(6) are then simplified to the following

dimensionless forms:

1þ t0s1
o

ot

� �
b2

o2u

ox2
þ o2u

oz2

� �
þ ð1� b2Þ oe

ox

� 	

� 1þ t1s1
o

ot

� �
oH
ox

¼ o2u

ot2
;

ð8Þ

1þ t0s1
o

ot

� �
b2

o2w

ox2
þ o2w

oz2

� �
þ ð1� b2Þ oe

oz

� 	

� 1þ t1s1
o

ot

� �
oH
oz

¼ o2u

ot2
;

ð9Þ

o2H
ox2

þ o2H
oz2

¼ 1þ s0
o

ot

� �
oH
ot

þ eH 1þ t2s0
o

ot

� �
oe

ot
;

ð10Þ

rxx ¼ 1þ t0s1
o

ot

� �
2b2

ou

ox
þ ð1� 2b2Þe

� 	
� 1þ t1s1

o

ot

� �
H;

ð11Þ

rzz ¼ 1þ t0s1
o

ot

� �
2b2

ow

oz
þ ð1� 2b2Þe

� 	
� 1þ t1s1

o

ot

� �
H;

ð12Þ

rxz ¼ b2 1þ t0s1
o

ot

� �
ou

oz
þ ow

ox

� �
; ð13Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ðkþ 2lÞ

p
¼ CS=CL is the ratio of the

classical shear wave speed (CS) to the classical longitudinal

wave speed (CL) and eH ¼ c2T0=½qCEðkþ 2lÞ� is the

dimensionless thermoelastic coupling constant.

We now introduce the displacement potentials / and w
through the Helmholtz vector representation as

u ¼ o/
ox

� ow
oz

;w ¼ o/
oz

þ ow
ox

: ð14Þ

Substituting (14) in Eqs. (8)–(10), we obtain

1þ t0s1
o

ot

� �
o2/
ox2

þ o2/
oz2

� �
� o2/

ot2

� 1þ t1s1
o

ot

� �
H ¼ 0;

ð15Þ

b2 1þ t0s1
o

ot

� �
o2w
ox2

þ o2w
oz2

� �
� o2w

ot2
¼ 0; ð16Þ

o2H
ox2

þ o2H
oz2

¼ 1þ s0
o

ot

� �
oH
ot

þ eH 1þ t2s0
o

ot

� �
o

ot
ðr2/Þ:

ð17Þ

Equations (15) and (17) show that the thermal field H is

coupled with the displacement potential / and thus gen-

erate two sets of coupled longitudinal waves, namely a

coupled longitudinal elastic wave (CP-wave) and a coupled

thermal wave (CT-wave). On the other hand, Eq. (16)

creates one independent modified vertically shear-type

wave (SV-type wave) which is not affected by the presence

of the thermal wave as reported in [23–26].

4. Dispersion equation and its solutions

For harmonic plane wave propagating in the direction

where the wave normal vector lies in the x-z plane making

an angle h0 with the positive z-axis (see Fig. 1), the solu-

tions of Eqs. (15)–(17) can be assumed as

ð/;H;wÞ ¼ð/0;H0;w0Þ
expfikðx sin h0 � z cos h0Þ � ixtg;

ð18Þ

where /0;H0;w0 are the constants (possible complex)

representing the coefficients of the wave amplitudes,

i ¼
ffiffiffiffiffiffiffi
�1

p
, k is the (dimensionless) complex wavenumber

and xð[ 0Þ is the (dimensionless) assigned angular

frequency.

If we set, k ¼ RðkÞ þ iIðkÞ, where Rð�Þ and Ið�Þ
denote the real and imaginary parts, it may be verified that

for the waves to be physically realistic, we should have

RðkÞ[ 0 and IðkÞ� 0 and that only the real parts of the

solutions in (18) are physically relevant [39]. Then, for

these waves, x=RðkÞ is the phase speed and IðkÞ is the

decay (attenuation) coefficient.

Inserting (18) into Eqs. (15)–(17), we obtain the fol-

lowing system of linear algebraic equations for the

unknowns /0;H0 and w0:

1� is1xt0ð Þk2 � x2
� �

/0 þ 1� is1xt1ð ÞH0 ¼ 0; ð19Þ

b2 1� is1xt0ð Þk2 � x2
� �

w0 ¼ 0; ð20Þ

N Sarkar et al.
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ieHxð1� is0xt2Þk2/0 þ k2 � ixð1� is0xÞ
� �

H0 ¼ 0:

ð21Þ

The condition for the existence of non-trivial solutions for

/0 and H0 of the system of Eqs. (19) and (21) yields the

following dispersion equation

1� is1xt0ð Þk2 � x2
� �

k2 � ixð1� is0xÞ
� �

� ieHxð1� is0xt2Þ 1� is1xt1ð Þk2 ¼ 0:
ð22Þ

4.1. Discussion of the dispersion relation

• MGL model If t0 ¼ t1 ¼ t2 ¼ 1, Eq. (22) reduces to

1� is1xð Þk2 � x2
� �

k2 � ixð1� is0xÞ
� �

� ieHxð1� is0xÞ 1� is1xð Þk2 ¼ 0;
ð23Þ

which is the dispersion equation of the coupled dilatational

elastic and thermal waves in the frame of MGL model [20].

• GL model If t0 ¼ t2 ¼ 0; t1 ¼ 1, then Eq. (22) becomes

k2 � x2
� �

k2 � ixð1� is0xÞ
� �

� ieHx 1� is1xð Þk2 ¼ 0:
ð24Þ

Equation (24) is the dispersion equation of the coupled

dilatational elastic and thermal waves under the GL model

[4] as reported by Agarwal [25]. Again, for s1 ¼ s0 ¼ s,
Eq. (24) agrees with the result of Nayef and Nemat-Nasser

[23].

• LS model For t0 ¼ t1 ¼ 0; t2 ¼ 1; Eq. (22) reduces to

k2 � x2
� �

k2 � ixð1� is0xÞ
� �

� ieHxð1� is0xÞk2 ¼ 0:
ð25Þ

Equation (25) is the dispersion equation of the coupled

dilatational elastic and thermal waves in the LS theory [2]

as obtained by Puri [24] and Nayef and Nemat-Nasser [23].

• CTE model If we substitute s0 ¼ s1 ¼ 0, then the

dispersion relation (22) reduces to

k4 � k2 x2 þ ixð1þ eHÞ
� �

þ ix3 ¼ 0; ð26Þ

which is the dispersion relation for the propagation of

plane waves in case of CTE model, earlier discussed by

Chadwick and Sneddon [22].

So, we conclude that Eq. (22) represents the more general

dispersion relation for the coupled longitudinal thermoe-

lastic waves in the frame of the MGL, GL, LS and CTE

models in a unified way. For given x, Eq. (22) gives us

four roots, namely � k1 and � k2, for k. Of these four roots,

only two roots yield positive values for RðkÞ along with

Iðk1;2Þ� 0. Hence, there are two possible distinct traveling

coupled dilatational thermal-elastic waves of wavenumbers

k1 and k2, namely a CP-wave and a CT-wave. These

coupled waves are influenced by the strain rate present in

the MGL model. The phase speeds of the CP- and CT-

waves are given by, V1;2 ¼ x=Rðk1;2Þ [43]. Since the

attenuation coefficients Iðk1;2Þ and the phase speeds V1;2

are nonlinear functions of x, which in turn means that the

CP-wave and the CT-wave exhibit attenuation as well as

dispersion due to the thermoelastic character of the

medium in question. The material properties of the medium

and the strain rate term of the MGL model influence the

dispersion and the attenuation nature of these waves.

Besides, since the wavenumbers of these waves are

complex, so they are inhomogeneous waves.

Equation (22), for eH ¼ 0 admits the solutions

k21 ¼
x2

ð1� is1xt0Þ
; k22 ¼ ixð1� is0xÞ: ð27Þ

Hence, for eH 6¼ 0, we may then call k1 and k2, the

wavenumber of CP- and CT-waves, respectively, by fol-

lowing Agarwal [40], Roy Choudhuri [41] and Sharma

et al. [42]. Consequently, for the present problem, we

conclude that V1 and V2 are the phase speeds of the CP-

wave and the CT-wave, respectively, both of which are

modified by the presence of the thermal relaxation times

and the strain rate of the MGL model.

The CP- and the CT-waves are coupled dilatational

thermal-elastic waves and the coupling is measured by the

following amplitudes ratios:

H0

/0

� �
j

¼
x2 � 1� is1xt0ð Þk2j

1� is1xt1ð Þ ¼ fjðj ¼ 1; 2Þ: ð28Þ

Equation (20) is the secular equation for the SV-type wave.

A look at Eq. (20) reveals that this wave propagates with

the phase speed V3 given by

V3 ¼
x

Rðk3Þ
; k3 ¼

x

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� is1xt0

p : ð29Þ

The expressions in (29) show that the SV-type wave is

affected by the presence of the strain rate of the MGL

model, while the thermal field has no influence on this

wave. It is also interested to note that this wave is not only

dispersive in nature but also attenuated in contrast to the

GL, LS and CTE models (see [22–26] for details).

5. Reflection problem

Let a train of CP-wave having amplitude A0 and phase

speed V1 is made incident making an angle h0 with the

normal to the free surface z ¼ 0, as shown in Fig. 1.

Assuming the radiation in vacuum is neglected, when it

impinges the boundary z ¼ 0, three types of reflected

waves (CP-, CT- and SV-type) in the medium in question

are created. Suppose the reflected CP-, CT- and SV-type

waves make angles h1; h2 and h3, respectively, with the

Modified Green–Lindsay model on the reflection

Author's personal copy



positive z-axis. Then, the complete structures of the wave

fields consisting of the incident and reflected waves in the

medium may be expressed as

/ ¼ A0 exp ik1ðx sin h0 � z cos h0Þ � ixtf g

þ
X2
j¼1

Aj exp ikjðx sin hj þ z cos hjÞ � ixt
� �

;
ð30Þ

H ¼ f1A0 exp ik1ðx sin h0 � z cos h0Þ � ixtf g

þ
X2
j¼1

fjAj exp ikjðx sin hj þ z cos hjÞ � ixt
� �

;
ð31Þ

w ¼ B1 exp ik3ðx sin h3 þ z cos h3Þ � ixtf g; ð32Þ

where A1;A2 and B1 represent the coefficients of ampli-

tudes of the reflected CP-, CT- and SV-type waves,

respectively. The amplitude ratios are defined as the

amplitude ratios of the reflected waves to the incident wave

and are determined by the well-defined boundary condi-

tions at z ¼ 0.

Let us now consider the surface z ¼ 0 to be isothermal

and stress-free. Mathematically, these conditions may be

written in non-dimensional forms as

rzz ¼ rxz ¼ H ¼ 0; atz ¼ 0: ð33Þ

In terms of displacement potential functions, the first two

conditions in (33) can be written as

1þ s1t0
o

ot

� �
o2/
oz2

þ o2/
ox2

� �
þ 2b2 1þ s1t0

o

ot

� �

o2w
oxoz

� o2/
ox2

� �
� 1þ s1t1

o

ot

� �
H ¼ 0;

ð34Þ

2
o2/
oxoz

þ o2w
ox2

� o2w
oz2

� �
¼ 0; at z ¼ 0: ð35Þ

In order to satisfy the above boundary conditions at z ¼ 0,

the angles of the reflected waves must be related with the

angle of the incident CP-wave by the following relation:

k1 sin h0 ¼ k1 sin h1 ¼ k2 sin h2 ¼ k3 sin h3: ð36Þ

Relation (36) can also be written as

h0 ¼ h1 and
sin h0
V1

¼ sin h2
V2

¼ sin h3
V3

: ð37Þ

Substituting from Eqs. (30)–(32) into (33)–(35) and using

the relation (36), the following system of equations for the

amplitude ratios RCP ¼ A1=A0;RCT ¼ A2=A0 and RSV ¼
B1=A0 is obtained:

a11 a12 a13

a21 a22 a23

f1 f2 0

2
64

3
75

RCP

RCT

RSV

2
64

3
75 ¼

�a11

a21

�f1

2
64

3
75; ð38Þ

where

a11 ¼ x2 � 2b2ð1� is1xt0Þk21 sin2 h0;
a12 ¼ x2 � 2b2ð1� is1xt0Þk22 sin2 h2; a13 ¼ x2 sin 2h3;

a21 ¼ k21 sin 2h0; a22 ¼ k22 sin 2h2; a23 ¼ �k23 cos 2h3:

After solving (38), we get the amplitude ratios

RCP;RCT;RSV of the reflected CP-, CT- and SV-type waves,

respectively, in explicit forms. It is observed that the

amplitude ratios depend on the angle of incidence (h0) and
the material properties of the thermoelastic medium. It can

also be noted that for uncoupled thermoelasticity (eH ¼ 0),

fj ¼ 0ðj ¼ 1; 2Þ, and hence, there will be no reflected CT-

wave. So, in this case RCT ¼ 0 at each angle of incidence

h0.

6. Results and discussions

With the view of illustrating the analytical results obtained

in the previous sections, we now present some numerical

results. The material chosen for this purpose is crust, whose

material properties are [44]

k ¼ l ¼ 3:0� 1010Nm�2; T0 ¼ 300K;

q ¼ 2900kgm�3;CE ¼ 1100J kg�1 K�1

KT ¼ 3:0Wm�1 K�1; aT ¼ 1:0667� 10�5K�1;

eH ¼ 0:00268; s0 ¼ 0:25; s1 ¼ 2s0;x ¼ 0:2:

MATLAB R2010a software on a personal computer is used

for the purpose of numerical computations.

In Fig. 2a–c, the comparisons for the amplitude ratios of

the reflected CP-, CT- and SV-type waves with respect to

the angle of incidence h0 ð0	 
 h0 
 90	Þ of the incident

CP-wave have been shown in case of the three models: the

MGL, GL and LS models of generalized thermoelasticity.

Figure 3a and b reveals that the amplitude ratios jRCPj, and
jRCTj are largest for MGL model when compared to the GL

and LS models within the whole range of h0. Figure 3c

shows that the amplitude ratio jRSVj of the reflected SV-

type wave is remaining greater in MGL model within

0	 
 h0 
 60	 only, and within the range 60	\h0 
 90	, it
remains lesser in MGL when compared to GL and LS

models. Each of the amplitude ratio attains their maximum

at h0 ¼ 90	 for all the three models.

In Fig. 3a–c, we studied how the relaxation time

parameter s1 affects the variation of the amplitude ratios

jRCPj, jRCTj, and jRSVj under the MGL model when the

other relaxation time parameter s0 is kept fixed, namely

N Sarkar et al.
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s0 ¼ 0:25. In calculations, four different values of s1, that
is, s1 ¼ s0; 2s0; 3s0 and 4s0 are considered. Figure 3a and c

exhibits that the amplitude ratios jRCPj and jRSVj increase
gradually with the increase of s1. On the contrary, in

Fig. 3b, we observed that the amplitude ratio jRSVj
decreases as s1 increases for 0	 
 h0 
 60	. It is also evi-

dent that the amplitude ratios jRCPj, and jRCTj are most

sensitive to the relaxation time parameter s1, while the

amplitude ratio jRSVj is only sensitive to s1 only in the

range 0	 
 h0 
 68	, approximately.

The effect of the Poisson’s ratio ðrÞ on the behavior of

the amplitude ratios are also interesting. In Fig. 4a–c, we

investigated how the Poisson’s ratio affects the amplitude

ratios jRCPj, jRCTj and jRSVj under the MGL model. In the

calculations, four different values of the r, namely

r ¼ 0:25; 0:30; 0:33; 0:36, are taken. The Poisson’s ratio

has an increasing effect on amplitude ratios jRCPj and jRCTj
within the range 0	 
 h0 
 65	 and decreasing effect within

rest of the range of h0. On the contrary, r has an decreasing

effect on jRSVj for the whole range of the angle of inci-

dence h0. It is also noticed that the all the amplitude ratios

are affected significantly by the Poisson’s ratio.

Figure 5a and b reveals the influence of the thermoe-

lastic coupling parameter eH on the phase speeds of CP-

wave (V1) and CT-wave (V2), respectively, with respect to

the dimensionless angular frequency x in case of the MGL

model. The phase speeds are calculated for eH ¼
0:0; 0:00268; 0:00536; and 0.00804. It is clear that eH has

significant impact on V1, and V2. Both of the phase speeds

decrease gradually as eH increases, which in turn means

that eH has decreasing effect on the phase speeds of the CP-

and CT-waves. We also observed that for a fixed eH, the
phase speed V1 first increases gradually within the range

10
x
 20and then decreases sharply for 20\x
 100.

On the hand, Fig. 5b shows that the phase speed V2

increases rapidly for the range 10
x
 30, and thereafter
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Fig. 2 Variations of (a) jRCPj, (b) jRCTj and (c) jRSVj with h0 for incident CP-wave under four models

Modified Green–Lindsay model on the reflection

Author's personal copy



it becomes steady for x[ 30. These graphs expressed that

the CP- and CT-waves are dispersive in nature, which is the

verification of a result already pointed out in the text. As

we have also pointed out in the text that the SV-type wave

remaining unaffected by the presence of the thermal field,

here we did not present the variation of the SV-wave speed

for various eH.
In Fig. 6a and b, we presented the variations of the

phase speeds V1 and V2 versus x for various values of the

relaxation time parameter s1 while keeping the other

relaxation time parameter s0 fixed, namely s0 ¼ 0:25.

These figures expressed that the relaxation time parameter

s1 has significant influences the variations of the phase

speeds V1 and V2. Both of the phase speeds are decreasing

as the relaxation time parameter s1 increases. Figures 5 and
6 depict that the CP-wave is the slowest, while the CT-

wave wave is the fastest one within the whole range of x
(10
x
 100).

At last, Fig. 7 is drawn to compare our numerical result

for the phase speed of the CP-wave obtained in case of

CTE model with the result presented in Fig. 1 earlier by

Chadwick and Sneddon in their notable work [22]. We

noticed that, for the CTE theory ðs0 ¼ s1 ¼ 0Þ, the varia-

tion of the phase speed of the CP-wave in Fig. 7 is com-

pletely agree with Fig. 1 in [22].

7. Conclusions

In a thermoelastic medium under the MGL theory, there

are totally three kinds of propagating waves. The ther-

moelastic coupling generates two sets of coupled
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Fig. 3 Variation of (a) jRCPj, (b) jRCTj and (c) jRSVj with h0 for incident CP-wave at various values of s1 for fixed s0 ¼ 0:25 under MGL model
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Fig. 4 Variation of (a) jRCPj, (b) jRCTj and (c) jRSVj with h0 for incident CP-wave at various values of Poisson’s ratio r under MGL model
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longitudinal waves. There is also one independent SV-type

wave. The reflection of thermoelastic waves is also studied

for the incident CP-wave at a stress-free isothermal surface.

The thermal field affects only the longitudinal waves. The

coupling between the displacement and the temperature

fields makes the longitudinal waves (CP- and CT-waves)

not only dispersive but also attenuated. Similarly, the

introduction of the MGL model makes the SV-type wave

not only dispersive but also attenuated, in contrast to the

other generalized thermoelastic models. Numerical results

show that the amplitude ratios and of the reflected CP-, CT-

and SV-type waves are significantly affected by the

relaxation time parameter s1 as well as the Poisson’s ratio.
It is also observed that the maximum amount of the inci-

dent wave is reflected as (reflected) CP-wave. The phase

speed of the CP-wave as well as the CT-wave is sensitive

to eH, while the phase speed of SV-type wave is insensitive

to eH. The phase speed of the SV-type wave depends on the
Poisson’s ratio only. The present theoretical and numerical

results may provide interesting and significant information

for experimental scientists, researchers and seismologists

working on this type of problem.
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